Metamath Proof Explorer


Theorem wl-luk-ja

Description: Inference joining the antecedents of two premises. Copy of ja with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses wl-luk-ja.1 ¬ φ χ
wl-luk-ja.2 ψ χ
Assertion wl-luk-ja φ ψ χ

Proof

Step Hyp Ref Expression
1 wl-luk-ja.1 ¬ φ χ
2 wl-luk-ja.2 ψ χ
3 1 wl-luk-con1i ¬ χ φ
4 2 wl-luk-imim2i φ ψ φ χ
5 3 4 wl-luk-imtrid φ ψ ¬ χ χ
6 5 wl-luk-pm2.18d φ ψ χ