Metamath Proof Explorer


Theorem wl-luk-imim2i

Description: Inference adding common antecedents in an implication. Copy of imim2i with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis wl-luk-imim2i.1
|- ( ph -> ps )
Assertion wl-luk-imim2i
|- ( ( ch -> ph ) -> ( ch -> ps ) )

Proof

Step Hyp Ref Expression
1 wl-luk-imim2i.1
 |-  ( ph -> ps )
2 ax-luk1
 |-  ( ( ch -> ph ) -> ( ( ph -> ps ) -> ( ch -> ps ) ) )
3 1 2 wl-luk-mpi
 |-  ( ( ch -> ph ) -> ( ch -> ps ) )