Metamath Proof Explorer


Theorem wl-luk-mpi

Description: A nested modus ponens inference. Copy of mpi with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses wl-luk-mpi.1
|- ps
wl-luk-mpi.2
|- ( ph -> ( ps -> ch ) )
Assertion wl-luk-mpi
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 wl-luk-mpi.1
 |-  ps
2 wl-luk-mpi.2
 |-  ( ph -> ( ps -> ch ) )
3 1 wl-luk-a1i
 |-  ( -. ch -> ps )
4 3 2 wl-luk-imtrid
 |-  ( ph -> ( -. ch -> ch ) )
5 4 wl-luk-pm2.18d
 |-  ( ph -> ch )