Metamath Proof Explorer


Theorem wl-luk-mpi

Description: A nested modus ponens inference. Copy of mpi with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses wl-luk-mpi.1 𝜓
wl-luk-mpi.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion wl-luk-mpi ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 wl-luk-mpi.1 𝜓
2 wl-luk-mpi.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 1 wl-luk-a1i ( ¬ 𝜒𝜓 )
4 3 2 wl-luk-imtrid ( 𝜑 → ( ¬ 𝜒𝜒 ) )
5 4 wl-luk-pm2.18d ( 𝜑𝜒 )