Metamath Proof Explorer


Theorem wl-moteq

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of KalishMontague p. 86. (Contributed by Wolf Lammen, 5-Mar-2023)

Ref Expression
Assertion wl-moteq
|- ( E* x T. -> y = z )

Proof

Step Hyp Ref Expression
1 df-mo
 |-  ( E* x T. <-> E. w A. x ( T. -> x = w ) )
2 stdpc5v
 |-  ( A. x ( T. -> x = w ) -> ( T. -> A. x x = w ) )
3 tru
 |-  T.
4 3 pm2.24i
 |-  ( -. T. -> y = z )
5 aeveq
 |-  ( A. x x = w -> y = z )
6 4 5 ja
 |-  ( ( T. -> A. x x = w ) -> y = z )
7 2 6 syl
 |-  ( A. x ( T. -> x = w ) -> y = z )
8 7 exlimiv
 |-  ( E. w A. x ( T. -> x = w ) -> y = z )
9 1 8 sylbi
 |-  ( E* x T. -> y = z )