Metamath Proof Explorer


Theorem wl-motae

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of KalishMontague p. 86. (Contributed by Wolf Lammen, 5-Mar-2023)

Ref Expression
Assertion wl-motae
|- ( E* u T. -> A. x y = z )

Proof

Step Hyp Ref Expression
1 wl-cbvmotv
 |-  ( E* u T. -> E* v T. )
2 wl-moteq
 |-  ( E* v T. -> y = z )
3 2 alrimiv
 |-  ( E* v T. -> A. x y = z )
4 1 3 syl
 |-  ( E* u T. -> A. x y = z )