Metamath Proof Explorer


Theorem wl-motae

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of KalishMontague p. 86. (Contributed by Wolf Lammen, 5-Mar-2023)

Ref Expression
Assertion wl-motae ( ∃* 𝑢 ⊤ → ∀ 𝑥 𝑦 = 𝑧 )

Proof

Step Hyp Ref Expression
1 wl-cbvmotv ( ∃* 𝑢 ⊤ → ∃* 𝑣 ⊤ )
2 wl-moteq ( ∃* 𝑣 ⊤ → 𝑦 = 𝑧 )
3 2 alrimiv ( ∃* 𝑣 ⊤ → ∀ 𝑥 𝑦 = 𝑧 )
4 1 3 syl ( ∃* 𝑢 ⊤ → ∀ 𝑥 𝑦 = 𝑧 )