Metamath Proof Explorer


Theorem wl-motae

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of KalishMontague p. 86. (Contributed by Wolf Lammen, 5-Mar-2023)

Ref Expression
Assertion wl-motae * u x y = z

Proof

Step Hyp Ref Expression
1 wl-cbvmotv * u * v
2 wl-moteq * v y = z
3 2 alrimiv * v x y = z
4 1 3 syl * u x y = z