Metamath Proof Explorer


Theorem wl-cbvmotv

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of KalishMontague p. 86. (Contributed by Wolf Lammen, 5-Mar-2023)

Ref Expression
Assertion wl-cbvmotv * x * y

Proof

Step Hyp Ref Expression
1 ax7v2 x = y x = z y = z
2 1 imim2d x = y x = z y = z
3 2 cbvalivw x x = z y y = z
4 3 eximi z x x = z z y y = z
5 df-mo * x z x x = z
6 df-mo * y z y y = z
7 4 5 6 3imtr4i * x * y