Metamath Proof Explorer


Theorem wl-cbvmotv

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of KalishMontague p. 86. (Contributed by Wolf Lammen, 5-Mar-2023)

Ref Expression
Assertion wl-cbvmotv ( ∃* 𝑥 ⊤ → ∃* 𝑦 ⊤ )

Proof

Step Hyp Ref Expression
1 ax7v2 ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧𝑦 = 𝑧 ) )
2 1 imim2d ( 𝑥 = 𝑦 → ( ( ⊤ → 𝑥 = 𝑧 ) → ( ⊤ → 𝑦 = 𝑧 ) ) )
3 2 cbvalivw ( ∀ 𝑥 ( ⊤ → 𝑥 = 𝑧 ) → ∀ 𝑦 ( ⊤ → 𝑦 = 𝑧 ) )
4 3 eximi ( ∃ 𝑧𝑥 ( ⊤ → 𝑥 = 𝑧 ) → ∃ 𝑧𝑦 ( ⊤ → 𝑦 = 𝑧 ) )
5 df-mo ( ∃* 𝑥 ⊤ ↔ ∃ 𝑧𝑥 ( ⊤ → 𝑥 = 𝑧 ) )
6 df-mo ( ∃* 𝑦 ⊤ ↔ ∃ 𝑧𝑦 ( ⊤ → 𝑦 = 𝑧 ) )
7 4 5 6 3imtr4i ( ∃* 𝑥 ⊤ → ∃* 𝑦 ⊤ )