Metamath Proof Explorer


Theorem wl-cbvmotv

Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of KalishMontague p. 86. (Contributed by Wolf Lammen, 5-Mar-2023)

Ref Expression
Assertion wl-cbvmotv
|- ( E* x T. -> E* y T. )

Proof

Step Hyp Ref Expression
1 ax7v2
 |-  ( x = y -> ( x = z -> y = z ) )
2 1 imim2d
 |-  ( x = y -> ( ( T. -> x = z ) -> ( T. -> y = z ) ) )
3 2 cbvalivw
 |-  ( A. x ( T. -> x = z ) -> A. y ( T. -> y = z ) )
4 3 eximi
 |-  ( E. z A. x ( T. -> x = z ) -> E. z A. y ( T. -> y = z ) )
5 df-mo
 |-  ( E* x T. <-> E. z A. x ( T. -> x = z ) )
6 df-mo
 |-  ( E* y T. <-> E. z A. y ( T. -> y = z ) )
7 4 5 6 3imtr4i
 |-  ( E* x T. -> E* y T. )