Metamath Proof Explorer


Theorem wl-moae

Description: Two ways to express "at most one thing exists" or, in this context equivalently, "exactly one thing exists" . The equivalence results from the presence of ax-6 in the proof, that ensures "at least one thing exists". For other equivalences see wl-euae and exists1 . Gerard Lang pointed out, that E. y A. x x = y with disjoint x and y ( df-mo , trut ) also means "exactly one thing exists" . (Contributed by NM, 5-Apr-2004) State the theorem using truth constant T. . (Revised by BJ, 7-Oct-2022) Reduce axiom dependencies, and use E* . (Revised by Wolf Lammen, 7-Mar-2023)

Ref Expression
Assertion wl-moae
|- ( E* x T. <-> A. x x = y )

Proof

Step Hyp Ref Expression
1 wl-motae
 |-  ( E* x T. -> A. x x = y )
2 hbaev
 |-  ( A. x x = y -> A. y A. x x = y )
3 2 19.8w
 |-  ( A. x x = y -> E. y A. x x = y )
4 ax-1
 |-  ( x = y -> ( T. -> x = y ) )
5 4 alimi
 |-  ( A. x x = y -> A. x ( T. -> x = y ) )
6 5 eximi
 |-  ( E. y A. x x = y -> E. y A. x ( T. -> x = y ) )
7 3 6 syl
 |-  ( A. x x = y -> E. y A. x ( T. -> x = y ) )
8 df-mo
 |-  ( E* x T. <-> E. y A. x ( T. -> x = y ) )
9 7 8 sylibr
 |-  ( A. x x = y -> E* x T. )
10 1 9 impbii
 |-  ( E* x T. <-> A. x x = y )