Metamath Proof Explorer


Theorem wl-nfimf1

Description: An antecedent is irrelevant to a not-free property, if it always holds. I used this variant of nfim in dvelimdf to simplify the proof. (Contributed by Wolf Lammen, 14-Oct-2018)

Ref Expression
Assertion wl-nfimf1
|- ( A. x ph -> ( F/ x ( ph -> ps ) <-> F/ x ps ) )

Proof

Step Hyp Ref Expression
1 nfa1
 |-  F/ x A. x ph
2 pm5.5
 |-  ( ph -> ( ( ph -> ps ) <-> ps ) )
3 2 sps
 |-  ( A. x ph -> ( ( ph -> ps ) <-> ps ) )
4 1 3 nfbidf
 |-  ( A. x ph -> ( F/ x ( ph -> ps ) <-> F/ x ps ) )