Metamath Proof Explorer


Theorem wl-nfimf1

Description: An antecedent is irrelevant to a not-free property, if it always holds. I used this variant of nfim in dvelimdf to simplify the proof. (Contributed by Wolf Lammen, 14-Oct-2018)

Ref Expression
Assertion wl-nfimf1 ( ∀ 𝑥 𝜑 → ( Ⅎ 𝑥 ( 𝜑𝜓 ) ↔ Ⅎ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 nfa1 𝑥𝑥 𝜑
2 pm5.5 ( 𝜑 → ( ( 𝜑𝜓 ) ↔ 𝜓 ) )
3 2 sps ( ∀ 𝑥 𝜑 → ( ( 𝜑𝜓 ) ↔ 𝜓 ) )
4 1 3 nfbidf ( ∀ 𝑥 𝜑 → ( Ⅎ 𝑥 ( 𝜑𝜓 ) ↔ Ⅎ 𝑥 𝜓 ) )