Description: Closure of structure replacement in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wunsets.1 | |- ( ph -> U e. WUni ) |
|
| wunsets.2 | |- ( ph -> S e. U ) |
||
| wunsets.3 | |- ( ph -> A e. U ) |
||
| Assertion | wunsets | |- ( ph -> ( S sSet A ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunsets.1 | |- ( ph -> U e. WUni ) |
|
| 2 | wunsets.2 | |- ( ph -> S e. U ) |
|
| 3 | wunsets.3 | |- ( ph -> A e. U ) |
|
| 4 | setsvalg | |- ( ( S e. U /\ A e. U ) -> ( S sSet A ) = ( ( S |` ( _V \ dom { A } ) ) u. { A } ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ph -> ( S sSet A ) = ( ( S |` ( _V \ dom { A } ) ) u. { A } ) ) |
| 6 | 1 2 | wunres | |- ( ph -> ( S |` ( _V \ dom { A } ) ) e. U ) |
| 7 | 1 3 | wunsn | |- ( ph -> { A } e. U ) |
| 8 | 1 6 7 | wunun | |- ( ph -> ( ( S |` ( _V \ dom { A } ) ) u. { A } ) e. U ) |
| 9 | 5 8 | eqeltrd | |- ( ph -> ( S sSet A ) e. U ) |