| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 2 | 1 | wwlknbp |  |-  ( W e. ( N WWalksN G ) -> ( G e. _V /\ N e. NN0 /\ W e. Word ( Vtx ` G ) ) ) | 
						
							| 3 |  | iswwlksn |  |-  ( N e. NN0 -> ( W e. ( N WWalksN G ) <-> ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( G e. _V /\ N e. NN0 /\ W e. Word ( Vtx ` G ) ) -> ( W e. ( N WWalksN G ) <-> ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) ) ) | 
						
							| 5 |  | simpl |  |-  ( ( W e. ( WWalks ` G ) /\ ( # ` W ) = ( N + 1 ) ) -> W e. ( WWalks ` G ) ) | 
						
							| 6 | 4 5 | biimtrdi |  |-  ( ( G e. _V /\ N e. NN0 /\ W e. Word ( Vtx ` G ) ) -> ( W e. ( N WWalksN G ) -> W e. ( WWalks ` G ) ) ) | 
						
							| 7 | 2 6 | mpcom |  |-  ( W e. ( N WWalksN G ) -> W e. ( WWalks ` G ) ) |