| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | wwlknbp | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 3 |  | iswwlksn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  ↔  ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) ) ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝑊  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  ( 𝑁  +  1 ) )  →  𝑊  ∈  ( WWalks ‘ 𝐺 ) ) | 
						
							| 6 | 4 5 | biimtrdi | ⊢ ( ( 𝐺  ∈  V  ∧  𝑁  ∈  ℕ0  ∧  𝑊  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑊  ∈  ( WWalks ‘ 𝐺 ) ) ) | 
						
							| 7 | 2 6 | mpcom | ⊢ ( 𝑊  ∈  ( 𝑁  WWalksN  𝐺 )  →  𝑊  ∈  ( WWalks ‘ 𝐺 ) ) |