Description: Extended real version of negnegd . (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xnegnegd.1 | |- ( ph -> A e. RR* ) |
|
| Assertion | xnegnegd | |- ( ph -> -e -e A = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegnegd.1 | |- ( ph -> A e. RR* ) |
|
| 2 | xnegneg | |- ( A e. RR* -> -e -e A = A ) |
|
| 3 | 1 2 | syl | |- ( ph -> -e -e A = A ) |