Metamath Proof Explorer
Description: Extended real version of negnegd . (Contributed by Glauco Siliprandi, 2-Jan-2022)
|
|
Ref |
Expression |
|
Hypothesis |
xnegnegd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
|
Assertion |
xnegnegd |
⊢ ( 𝜑 → -𝑒 -𝑒 𝐴 = 𝐴 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xnegnegd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 2 |
|
xnegneg |
⊢ ( 𝐴 ∈ ℝ* → -𝑒 -𝑒 𝐴 = 𝐴 ) |
| 3 |
1 2
|
syl |
⊢ ( 𝜑 → -𝑒 -𝑒 𝐴 = 𝐴 ) |