| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
| 2 |
|
rexneg |
⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 ) |
| 3 |
|
xnegeq |
⊢ ( -𝑒 𝐴 = - 𝐴 → -𝑒 -𝑒 𝐴 = -𝑒 - 𝐴 ) |
| 4 |
2 3
|
syl |
⊢ ( 𝐴 ∈ ℝ → -𝑒 -𝑒 𝐴 = -𝑒 - 𝐴 ) |
| 5 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 6 |
|
rexneg |
⊢ ( - 𝐴 ∈ ℝ → -𝑒 - 𝐴 = - - 𝐴 ) |
| 7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ ℝ → -𝑒 - 𝐴 = - - 𝐴 ) |
| 8 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 9 |
8
|
negnegd |
⊢ ( 𝐴 ∈ ℝ → - - 𝐴 = 𝐴 ) |
| 10 |
4 7 9
|
3eqtrd |
⊢ ( 𝐴 ∈ ℝ → -𝑒 -𝑒 𝐴 = 𝐴 ) |
| 11 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
| 12 |
|
xnegeq |
⊢ ( 𝐴 = +∞ → -𝑒 𝐴 = -𝑒 +∞ ) |
| 13 |
|
xnegpnf |
⊢ -𝑒 +∞ = -∞ |
| 14 |
12 13
|
eqtrdi |
⊢ ( 𝐴 = +∞ → -𝑒 𝐴 = -∞ ) |
| 15 |
|
xnegeq |
⊢ ( -𝑒 𝐴 = -∞ → -𝑒 -𝑒 𝐴 = -𝑒 -∞ ) |
| 16 |
14 15
|
syl |
⊢ ( 𝐴 = +∞ → -𝑒 -𝑒 𝐴 = -𝑒 -∞ ) |
| 17 |
|
id |
⊢ ( 𝐴 = +∞ → 𝐴 = +∞ ) |
| 18 |
11 16 17
|
3eqtr4a |
⊢ ( 𝐴 = +∞ → -𝑒 -𝑒 𝐴 = 𝐴 ) |
| 19 |
|
xnegeq |
⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = -𝑒 -∞ ) |
| 20 |
19 11
|
eqtrdi |
⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = +∞ ) |
| 21 |
|
xnegeq |
⊢ ( -𝑒 𝐴 = +∞ → -𝑒 -𝑒 𝐴 = -𝑒 +∞ ) |
| 22 |
20 21
|
syl |
⊢ ( 𝐴 = -∞ → -𝑒 -𝑒 𝐴 = -𝑒 +∞ ) |
| 23 |
|
id |
⊢ ( 𝐴 = -∞ → 𝐴 = -∞ ) |
| 24 |
13 22 23
|
3eqtr4a |
⊢ ( 𝐴 = -∞ → -𝑒 -𝑒 𝐴 = 𝐴 ) |
| 25 |
10 18 24
|
3jaoi |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → -𝑒 -𝑒 𝐴 = 𝐴 ) |
| 26 |
1 25
|
sylbi |
⊢ ( 𝐴 ∈ ℝ* → -𝑒 -𝑒 𝐴 = 𝐴 ) |