| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-xneg |
⊢ -𝑒 𝐴 = if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) |
| 2 |
|
renepnf |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≠ +∞ ) |
| 3 |
|
ifnefalse |
⊢ ( 𝐴 ≠ +∞ → if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) = if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) |
| 4 |
2 3
|
syl |
⊢ ( 𝐴 ∈ ℝ → if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) = if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) |
| 5 |
|
renemnf |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≠ -∞ ) |
| 6 |
|
ifnefalse |
⊢ ( 𝐴 ≠ -∞ → if ( 𝐴 = -∞ , +∞ , - 𝐴 ) = - 𝐴 ) |
| 7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ ℝ → if ( 𝐴 = -∞ , +∞ , - 𝐴 ) = - 𝐴 ) |
| 8 |
4 7
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ → if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) = - 𝐴 ) |
| 9 |
1 8
|
eqtrid |
⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 ) |