Description: Extended real version of neg11 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xneg11 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 = -𝑒 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegeq | ⊢ ( -𝑒 𝐴 = -𝑒 𝐵 → -𝑒 -𝑒 𝐴 = -𝑒 -𝑒 𝐵 ) | |
| 2 | xnegneg | ⊢ ( 𝐴 ∈ ℝ* → -𝑒 -𝑒 𝐴 = 𝐴 ) | |
| 3 | xnegneg | ⊢ ( 𝐵 ∈ ℝ* → -𝑒 -𝑒 𝐵 = 𝐵 ) | |
| 4 | 2 3 | eqeqan12d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 -𝑒 𝐴 = -𝑒 -𝑒 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 5 | 1 4 | imbitrid | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 = -𝑒 𝐵 → 𝐴 = 𝐵 ) ) |
| 6 | xnegeq | ⊢ ( 𝐴 = 𝐵 → -𝑒 𝐴 = -𝑒 𝐵 ) | |
| 7 | 5 6 | impbid1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 = -𝑒 𝐵 ↔ 𝐴 = 𝐵 ) ) |