Description: Extended real version of neg11 . (Contributed by Mario Carneiro, 20-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xneg11 | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e A = -e B <-> A = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegeq | |- ( -e A = -e B -> -e -e A = -e -e B ) |
|
2 | xnegneg | |- ( A e. RR* -> -e -e A = A ) |
|
3 | xnegneg | |- ( B e. RR* -> -e -e B = B ) |
|
4 | 2 3 | eqeqan12d | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e -e A = -e -e B <-> A = B ) ) |
5 | 1 4 | syl5ib | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e A = -e B -> A = B ) ) |
6 | xnegeq | |- ( A = B -> -e A = -e B ) |
|
7 | 5 6 | impbid1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e A = -e B <-> A = B ) ) |