Metamath Proof Explorer


Theorem xneg11

Description: Extended real version of neg11 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xneg11 A*B*A=BA=B

Proof

Step Hyp Ref Expression
1 xnegeq A=BA=B
2 xnegneg A*A=A
3 xnegneg B*B=B
4 2 3 eqeqan12d A*B*A=BA=B
5 1 4 imbitrid A*B*A=BA=B
6 xnegeq A=BA=B
7 5 6 impbid1 A*B*A=BA=B