| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xnn0add4d.1 |
|- ( ph -> A e. NN0* ) |
| 2 |
|
xnn0add4d.2 |
|- ( ph -> B e. NN0* ) |
| 3 |
|
xnn0add4d.3 |
|- ( ph -> C e. NN0* ) |
| 4 |
|
xnn0add4d.4 |
|- ( ph -> D e. NN0* ) |
| 5 |
|
xnn0xrnemnf |
|- ( A e. NN0* -> ( A e. RR* /\ A =/= -oo ) ) |
| 6 |
1 5
|
syl |
|- ( ph -> ( A e. RR* /\ A =/= -oo ) ) |
| 7 |
|
xnn0xrnemnf |
|- ( B e. NN0* -> ( B e. RR* /\ B =/= -oo ) ) |
| 8 |
2 7
|
syl |
|- ( ph -> ( B e. RR* /\ B =/= -oo ) ) |
| 9 |
|
xnn0xrnemnf |
|- ( C e. NN0* -> ( C e. RR* /\ C =/= -oo ) ) |
| 10 |
3 9
|
syl |
|- ( ph -> ( C e. RR* /\ C =/= -oo ) ) |
| 11 |
|
xnn0xrnemnf |
|- ( D e. NN0* -> ( D e. RR* /\ D =/= -oo ) ) |
| 12 |
4 11
|
syl |
|- ( ph -> ( D e. RR* /\ D =/= -oo ) ) |
| 13 |
6 8 10 12
|
xadd4d |
|- ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( ( A +e C ) +e ( B +e D ) ) ) |