| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xadd4d.1 |
|- ( ph -> ( A e. RR* /\ A =/= -oo ) ) |
| 2 |
|
xadd4d.2 |
|- ( ph -> ( B e. RR* /\ B =/= -oo ) ) |
| 3 |
|
xadd4d.3 |
|- ( ph -> ( C e. RR* /\ C =/= -oo ) ) |
| 4 |
|
xadd4d.4 |
|- ( ph -> ( D e. RR* /\ D =/= -oo ) ) |
| 5 |
|
xaddass |
|- ( ( ( C e. RR* /\ C =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( D e. RR* /\ D =/= -oo ) ) -> ( ( C +e B ) +e D ) = ( C +e ( B +e D ) ) ) |
| 6 |
3 2 4 5
|
syl3anc |
|- ( ph -> ( ( C +e B ) +e D ) = ( C +e ( B +e D ) ) ) |
| 7 |
6
|
oveq2d |
|- ( ph -> ( A +e ( ( C +e B ) +e D ) ) = ( A +e ( C +e ( B +e D ) ) ) ) |
| 8 |
3
|
simpld |
|- ( ph -> C e. RR* ) |
| 9 |
4
|
simpld |
|- ( ph -> D e. RR* ) |
| 10 |
8 9
|
xaddcld |
|- ( ph -> ( C +e D ) e. RR* ) |
| 11 |
|
xaddnemnf |
|- ( ( ( C e. RR* /\ C =/= -oo ) /\ ( D e. RR* /\ D =/= -oo ) ) -> ( C +e D ) =/= -oo ) |
| 12 |
3 4 11
|
syl2anc |
|- ( ph -> ( C +e D ) =/= -oo ) |
| 13 |
|
xaddass |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( ( C +e D ) e. RR* /\ ( C +e D ) =/= -oo ) ) -> ( ( A +e B ) +e ( C +e D ) ) = ( A +e ( B +e ( C +e D ) ) ) ) |
| 14 |
1 2 10 12 13
|
syl112anc |
|- ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( A +e ( B +e ( C +e D ) ) ) ) |
| 15 |
2
|
simpld |
|- ( ph -> B e. RR* ) |
| 16 |
|
xaddcom |
|- ( ( C e. RR* /\ B e. RR* ) -> ( C +e B ) = ( B +e C ) ) |
| 17 |
8 15 16
|
syl2anc |
|- ( ph -> ( C +e B ) = ( B +e C ) ) |
| 18 |
17
|
oveq1d |
|- ( ph -> ( ( C +e B ) +e D ) = ( ( B +e C ) +e D ) ) |
| 19 |
|
xaddass |
|- ( ( ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) /\ ( D e. RR* /\ D =/= -oo ) ) -> ( ( B +e C ) +e D ) = ( B +e ( C +e D ) ) ) |
| 20 |
2 3 4 19
|
syl3anc |
|- ( ph -> ( ( B +e C ) +e D ) = ( B +e ( C +e D ) ) ) |
| 21 |
18 20
|
eqtr2d |
|- ( ph -> ( B +e ( C +e D ) ) = ( ( C +e B ) +e D ) ) |
| 22 |
21
|
oveq2d |
|- ( ph -> ( A +e ( B +e ( C +e D ) ) ) = ( A +e ( ( C +e B ) +e D ) ) ) |
| 23 |
14 22
|
eqtrd |
|- ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( A +e ( ( C +e B ) +e D ) ) ) |
| 24 |
15 9
|
xaddcld |
|- ( ph -> ( B +e D ) e. RR* ) |
| 25 |
|
xaddnemnf |
|- ( ( ( B e. RR* /\ B =/= -oo ) /\ ( D e. RR* /\ D =/= -oo ) ) -> ( B +e D ) =/= -oo ) |
| 26 |
2 4 25
|
syl2anc |
|- ( ph -> ( B +e D ) =/= -oo ) |
| 27 |
|
xaddass |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) /\ ( ( B +e D ) e. RR* /\ ( B +e D ) =/= -oo ) ) -> ( ( A +e C ) +e ( B +e D ) ) = ( A +e ( C +e ( B +e D ) ) ) ) |
| 28 |
1 3 24 26 27
|
syl112anc |
|- ( ph -> ( ( A +e C ) +e ( B +e D ) ) = ( A +e ( C +e ( B +e D ) ) ) ) |
| 29 |
7 23 28
|
3eqtr4d |
|- ( ph -> ( ( A +e B ) +e ( C +e D ) ) = ( ( A +e C ) +e ( B +e D ) ) ) |