Metamath Proof Explorer


Theorem xorcomOLD

Description: Obsolete version of xorcom as of 21-Apr-2024. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion xorcomOLD
|- ( ( ph \/_ ps ) <-> ( ps \/_ ph ) )

Proof

Step Hyp Ref Expression
1 bicom
 |-  ( ( ph <-> ps ) <-> ( ps <-> ph ) )
2 1 notbii
 |-  ( -. ( ph <-> ps ) <-> -. ( ps <-> ph ) )
3 df-xor
 |-  ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) )
4 df-xor
 |-  ( ( ps \/_ ph ) <-> -. ( ps <-> ph ) )
5 2 3 4 3bitr4i
 |-  ( ( ph \/_ ps ) <-> ( ps \/_ ph ) )