Metamath Proof Explorer


Theorem xordi

Description: Conjunction distributes over exclusive-or, using -. ( ph <-> ps ) to express exclusive-or. This is one way to interpret the distributive law of multiplication over addition in modulo 2 arithmetic. This is not necessarily true in intuitionistic logic, though anxordi does hold in it. (Contributed by NM, 3-Oct-2008)

Ref Expression
Assertion xordi
|- ( ( ph /\ -. ( ps <-> ch ) ) <-> -. ( ( ph /\ ps ) <-> ( ph /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 annim
 |-  ( ( ph /\ -. ( ps <-> ch ) ) <-> -. ( ph -> ( ps <-> ch ) ) )
2 pm5.32
 |-  ( ( ph -> ( ps <-> ch ) ) <-> ( ( ph /\ ps ) <-> ( ph /\ ch ) ) )
3 1 2 xchbinx
 |-  ( ( ph /\ -. ( ps <-> ch ) ) <-> -. ( ( ph /\ ps ) <-> ( ph /\ ch ) ) )