Step |
Hyp |
Ref |
Expression |
1 |
|
xpsds.t |
|- T = ( R Xs. S ) |
2 |
|
xpsds.x |
|- X = ( Base ` R ) |
3 |
|
xpsds.y |
|- Y = ( Base ` S ) |
4 |
|
xpsds.1 |
|- ( ph -> R e. V ) |
5 |
|
xpsds.2 |
|- ( ph -> S e. W ) |
6 |
|
xpsds.p |
|- P = ( dist ` T ) |
7 |
1 2 3 4 5 6
|
xpsdsfn |
|- ( ph -> P Fn ( ( X X. Y ) X. ( X X. Y ) ) ) |
8 |
1 2 3 4 5
|
xpsbas |
|- ( ph -> ( X X. Y ) = ( Base ` T ) ) |
9 |
8
|
sqxpeqd |
|- ( ph -> ( ( X X. Y ) X. ( X X. Y ) ) = ( ( Base ` T ) X. ( Base ` T ) ) ) |
10 |
9
|
fneq2d |
|- ( ph -> ( P Fn ( ( X X. Y ) X. ( X X. Y ) ) <-> P Fn ( ( Base ` T ) X. ( Base ` T ) ) ) ) |
11 |
7 10
|
mpbid |
|- ( ph -> P Fn ( ( Base ` T ) X. ( Base ` T ) ) ) |