| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpsds.t |
|- T = ( R Xs. S ) |
| 2 |
|
xpsds.x |
|- X = ( Base ` R ) |
| 3 |
|
xpsds.y |
|- Y = ( Base ` S ) |
| 4 |
|
xpsds.1 |
|- ( ph -> R e. V ) |
| 5 |
|
xpsds.2 |
|- ( ph -> S e. W ) |
| 6 |
|
xpsds.p |
|- P = ( dist ` T ) |
| 7 |
|
xpsds.m |
|- M = ( ( dist ` R ) |` ( X X. X ) ) |
| 8 |
|
xpsds.n |
|- N = ( ( dist ` S ) |` ( Y X. Y ) ) |
| 9 |
|
xpsds.3 |
|- ( ph -> M e. ( *Met ` X ) ) |
| 10 |
|
xpsds.4 |
|- ( ph -> N e. ( *Met ` Y ) ) |
| 11 |
|
eqid |
|- ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) |
| 12 |
|
eqid |
|- ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 13 |
|
eqid |
|- ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |
| 14 |
|
eqid |
|- ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 15 |
|
eqid |
|- ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 16 |
|
fvexd |
|- ( ph -> ( Scalar ` R ) e. _V ) |
| 17 |
|
2on |
|- 2o e. On |
| 18 |
17
|
a1i |
|- ( ph -> 2o e. On ) |
| 19 |
|
fvexd |
|- ( ( ph /\ k e. 2o ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) e. _V ) |
| 20 |
|
elpri |
|- ( k e. { (/) , 1o } -> ( k = (/) \/ k = 1o ) ) |
| 21 |
|
df2o3 |
|- 2o = { (/) , 1o } |
| 22 |
20 21
|
eleq2s |
|- ( k e. 2o -> ( k = (/) \/ k = 1o ) ) |
| 23 |
9
|
adantr |
|- ( ( ph /\ k = (/) ) -> M e. ( *Met ` X ) ) |
| 24 |
|
fveq2 |
|- ( k = (/) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) |
| 25 |
|
fvpr0o |
|- ( R e. V -> ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) = R ) |
| 26 |
4 25
|
syl |
|- ( ph -> ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) = R ) |
| 27 |
24 26
|
sylan9eqr |
|- ( ( ph /\ k = (/) ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = R ) |
| 28 |
27
|
fveq2d |
|- ( ( ph /\ k = (/) ) -> ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( dist ` R ) ) |
| 29 |
27
|
fveq2d |
|- ( ( ph /\ k = (/) ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( Base ` R ) ) |
| 30 |
29 2
|
eqtr4di |
|- ( ( ph /\ k = (/) ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = X ) |
| 31 |
30
|
sqxpeqd |
|- ( ( ph /\ k = (/) ) -> ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( X X. X ) ) |
| 32 |
28 31
|
reseq12d |
|- ( ( ph /\ k = (/) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( ( dist ` R ) |` ( X X. X ) ) ) |
| 33 |
32 7
|
eqtr4di |
|- ( ( ph /\ k = (/) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = M ) |
| 34 |
30
|
fveq2d |
|- ( ( ph /\ k = (/) ) -> ( *Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( *Met ` X ) ) |
| 35 |
23 33 34
|
3eltr4d |
|- ( ( ph /\ k = (/) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( *Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 36 |
10
|
adantr |
|- ( ( ph /\ k = 1o ) -> N e. ( *Met ` Y ) ) |
| 37 |
|
fveq2 |
|- ( k = 1o -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) |
| 38 |
|
fvpr1o |
|- ( S e. W -> ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) = S ) |
| 39 |
5 38
|
syl |
|- ( ph -> ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) = S ) |
| 40 |
37 39
|
sylan9eqr |
|- ( ( ph /\ k = 1o ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = S ) |
| 41 |
40
|
fveq2d |
|- ( ( ph /\ k = 1o ) -> ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( dist ` S ) ) |
| 42 |
40
|
fveq2d |
|- ( ( ph /\ k = 1o ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( Base ` S ) ) |
| 43 |
42 3
|
eqtr4di |
|- ( ( ph /\ k = 1o ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = Y ) |
| 44 |
43
|
sqxpeqd |
|- ( ( ph /\ k = 1o ) -> ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( Y X. Y ) ) |
| 45 |
41 44
|
reseq12d |
|- ( ( ph /\ k = 1o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( ( dist ` S ) |` ( Y X. Y ) ) ) |
| 46 |
45 8
|
eqtr4di |
|- ( ( ph /\ k = 1o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = N ) |
| 47 |
43
|
fveq2d |
|- ( ( ph /\ k = 1o ) -> ( *Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( *Met ` Y ) ) |
| 48 |
36 46 47
|
3eltr4d |
|- ( ( ph /\ k = 1o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( *Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 49 |
35 48
|
jaodan |
|- ( ( ph /\ ( k = (/) \/ k = 1o ) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( *Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 50 |
22 49
|
sylan2 |
|- ( ( ph /\ k e. 2o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( *Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 51 |
11 12 13 14 15 16 18 19 50
|
prdsxmet |
|- ( ph -> ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( *Met ` ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) ) |
| 52 |
|
fnpr2o |
|- ( ( R e. V /\ S e. W ) -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
| 53 |
4 5 52
|
syl2anc |
|- ( ph -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
| 54 |
|
dffn5 |
|- ( { <. (/) , R >. , <. 1o , S >. } Fn 2o <-> { <. (/) , R >. , <. 1o , S >. } = ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) |
| 55 |
53 54
|
sylib |
|- ( ph -> { <. (/) , R >. , <. 1o , S >. } = ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) |
| 56 |
55
|
oveq2d |
|- ( ph -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) |
| 57 |
56
|
fveq2d |
|- ( ph -> ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) |
| 58 |
|
eqid |
|- ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 59 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
| 60 |
|
eqid |
|- ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
| 61 |
1 2 3 4 5 58 59 60
|
xpsrnbas |
|- ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 62 |
56
|
fveq2d |
|- ( ph -> ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) |
| 63 |
61 62
|
eqtrd |
|- ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) |
| 64 |
63
|
fveq2d |
|- ( ph -> ( *Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) = ( *Met ` ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) ) |
| 65 |
51 57 64
|
3eltr4d |
|- ( ph -> ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) e. ( *Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) |