Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 17-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xreqle | |- ( ( A e. RR* /\ A = B ) -> A <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrleid | |- ( A e. RR* -> A <_ A ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR* /\ A = B ) -> A <_ A ) |
| 3 | simpr | |- ( ( A e. RR* /\ A = B ) -> A = B ) |
|
| 4 | breq2 | |- ( A = B -> ( A <_ A <-> A <_ B ) ) |
|
| 5 | 4 | biimpac | |- ( ( A <_ A /\ A = B ) -> A <_ B ) |
| 6 | 2 3 5 | syl2anc | |- ( ( A e. RR* /\ A = B ) -> A <_ B ) |