Description: A nonnegative extended real is nonnegative. (Contributed by Glauco Siliprandi, 11-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrge0ge0 | |- ( A e. ( 0 [,] +oo ) -> 0 <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxrge0 | |- ( A e. ( 0 [,] +oo ) <-> ( A e. RR* /\ 0 <_ A ) ) |
|
| 2 | 1 | biimpi | |- ( A e. ( 0 [,] +oo ) -> ( A e. RR* /\ 0 <_ A ) ) |
| 3 | 2 | simprd | |- ( A e. ( 0 [,] +oo ) -> 0 <_ A ) |