Metamath Proof Explorer


Theorem xrge0topn

Description: The topology of the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 20-Jun-2017)

Ref Expression
Assertion xrge0topn
|- ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) )
2 xrstopn
 |-  ( ordTop ` <_ ) = ( TopOpen ` RR*s )
3 1 2 resstopn
 |-  ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) ) = ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) )
4 3 eqcomi
 |-  ( TopOpen ` ( RR*s |`s ( 0 [,] +oo ) ) ) = ( ( ordTop ` <_ ) |`t ( 0 [,] +oo ) )