| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
| 2 |
1
|
a1i |
|- ( T. -> RR* = ( Base ` RR*s ) ) |
| 3 |
|
xrsadd |
|- +e = ( +g ` RR*s ) |
| 4 |
3
|
a1i |
|- ( T. -> +e = ( +g ` RR*s ) ) |
| 5 |
|
0xr |
|- 0 e. RR* |
| 6 |
5
|
a1i |
|- ( T. -> 0 e. RR* ) |
| 7 |
|
xaddlid |
|- ( x e. RR* -> ( 0 +e x ) = x ) |
| 8 |
7
|
adantl |
|- ( ( T. /\ x e. RR* ) -> ( 0 +e x ) = x ) |
| 9 |
|
xaddrid |
|- ( x e. RR* -> ( x +e 0 ) = x ) |
| 10 |
9
|
adantl |
|- ( ( T. /\ x e. RR* ) -> ( x +e 0 ) = x ) |
| 11 |
2 4 6 8 10
|
grpidd |
|- ( T. -> 0 = ( 0g ` RR*s ) ) |
| 12 |
11
|
mptru |
|- 0 = ( 0g ` RR*s ) |