| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
| 2 |
|
xrsadd |
|- +e = ( +g ` RR*s ) |
| 3 |
|
xrs0 |
|- 0 = ( 0g ` RR*s ) |
| 4 |
|
eqid |
|- ( invg ` RR*s ) = ( invg ` RR*s ) |
| 5 |
1 2 3 4
|
grpinvval |
|- ( B e. RR* -> ( ( invg ` RR*s ) ` B ) = ( iota_ x e. RR* ( x +e B ) = 0 ) ) |
| 6 |
|
xnegcl |
|- ( B e. RR* -> -e B e. RR* ) |
| 7 |
|
xaddeq0 |
|- ( ( x e. RR* /\ B e. RR* ) -> ( ( x +e B ) = 0 <-> x = -e B ) ) |
| 8 |
7
|
ancoms |
|- ( ( B e. RR* /\ x e. RR* ) -> ( ( x +e B ) = 0 <-> x = -e B ) ) |
| 9 |
6 8
|
riota5 |
|- ( B e. RR* -> ( iota_ x e. RR* ( x +e B ) = 0 ) = -e B ) |
| 10 |
5 9
|
eqtrd |
|- ( B e. RR* -> ( ( invg ` RR*s ) ` B ) = -e B ) |