Metamath Proof Explorer


Theorem zeroofn

Description: ZeroO is a function on Cat . (Contributed by Zhi Wang, 29-Aug-2024)

Ref Expression
Assertion zeroofn
|- ZeroO Fn Cat

Proof

Step Hyp Ref Expression
1 fvex
 |-  ( InitO ` c ) e. _V
2 1 inex1
 |-  ( ( InitO ` c ) i^i ( TermO ` c ) ) e. _V
3 df-zeroo
 |-  ZeroO = ( c e. Cat |-> ( ( InitO ` c ) i^i ( TermO ` c ) ) )
4 2 3 fnmpti
 |-  ZeroO Fn Cat