Metamath Proof Explorer


Definition df-zeroo

Description: An object A is called a zero object provided that it is both an initial object and a terminal object. Definition 7.7 of Adamek p. 103. (Contributed by AV, 3-Apr-2020)

Ref Expression
Assertion df-zeroo
|- ZeroO = ( c e. Cat |-> ( ( InitO ` c ) i^i ( TermO ` c ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 czeroo
 |-  ZeroO
1 vc
 |-  c
2 ccat
 |-  Cat
3 cinito
 |-  InitO
4 1 cv
 |-  c
5 4 3 cfv
 |-  ( InitO ` c )
6 ctermo
 |-  TermO
7 4 6 cfv
 |-  ( TermO ` c )
8 5 7 cin
 |-  ( ( InitO ` c ) i^i ( TermO ` c ) )
9 1 2 8 cmpt
 |-  ( c e. Cat |-> ( ( InitO ` c ) i^i ( TermO ` c ) ) )
10 0 9 wceq
 |-  ZeroO = ( c e. Cat |-> ( ( InitO ` c ) i^i ( TermO ` c ) ) )