Description: An object A is called a zero object provided that it is both an initial object and a terminal object. Definition 7.7 of Adamek p. 103. (Contributed by AV, 3-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df-zeroo | |- ZeroO = ( c e. Cat |-> ( ( InitO ` c ) i^i ( TermO ` c ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | czeroo | |- ZeroO |
|
1 | vc | |- c |
|
2 | ccat | |- Cat |
|
3 | cinito | |- InitO |
|
4 | 1 | cv | |- c |
5 | 4 3 | cfv | |- ( InitO ` c ) |
6 | ctermo | |- TermO |
|
7 | 4 6 | cfv | |- ( TermO ` c ) |
8 | 5 7 | cin | |- ( ( InitO ` c ) i^i ( TermO ` c ) ) |
9 | 1 2 8 | cmpt | |- ( c e. Cat |-> ( ( InitO ` c ) i^i ( TermO ` c ) ) ) |
10 | 0 9 | wceq | |- ZeroO = ( c e. Cat |-> ( ( InitO ` c ) i^i ( TermO ` c ) ) ) |