Metamath Proof Explorer


Theorem initofn

Description: InitO is a function on Cat . (Contributed by Zhi Wang, 29-Aug-2024)

Ref Expression
Assertion initofn
|- InitO Fn Cat

Proof

Step Hyp Ref Expression
1 fvex
 |-  ( Base ` c ) e. _V
2 1 rabex
 |-  { a e. ( Base ` c ) | A. b e. ( Base ` c ) E! h h e. ( a ( Hom ` c ) b ) } e. _V
3 df-inito
 |-  InitO = ( c e. Cat |-> { a e. ( Base ` c ) | A. b e. ( Base ` c ) E! h h e. ( a ( Hom ` c ) b ) } )
4 2 3 fnmpti
 |-  InitO Fn Cat