Metamath Proof Explorer


Theorem termofn

Description: TermO is a function on Cat . (Contributed by Zhi Wang, 29-Aug-2024)

Ref Expression
Assertion termofn
|- TermO Fn Cat

Proof

Step Hyp Ref Expression
1 fvex
 |-  ( Base ` c ) e. _V
2 1 rabex
 |-  { a e. ( Base ` c ) | A. b e. ( Base ` c ) E! h h e. ( b ( Hom ` c ) a ) } e. _V
3 df-termo
 |-  TermO = ( c e. Cat |-> { a e. ( Base ` c ) | A. b e. ( Base ` c ) E! h h e. ( b ( Hom ` c ) a ) } )
4 2 3 fnmpti
 |-  TermO Fn Cat