Metamath Proof Explorer
Description: InitO is a function on Cat . (Contributed by Zhi Wang, 29-Aug-2024)
|
|
Ref |
Expression |
|
Assertion |
initofn |
⊢ InitO Fn Cat |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
⊢ ( Base ‘ 𝑐 ) ∈ V |
2 |
1
|
rabex |
⊢ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } ∈ V |
3 |
|
df-inito |
⊢ InitO = ( 𝑐 ∈ Cat ↦ { 𝑎 ∈ ( Base ‘ 𝑐 ) ∣ ∀ 𝑏 ∈ ( Base ‘ 𝑐 ) ∃! ℎ ℎ ∈ ( 𝑎 ( Hom ‘ 𝑐 ) 𝑏 ) } ) |
4 |
2 3
|
fnmpti |
⊢ InitO Fn Cat |