Metamath Proof Explorer


Theorem znegscld

Description: The surreal integers are closed under negation. (Contributed by Scott Fenton, 26-May-2025)

Ref Expression
Hypothesis znegscld.1
|- ( ph -> A e. ZZ_s )
Assertion znegscld
|- ( ph -> ( -us ` A ) e. ZZ_s )

Proof

Step Hyp Ref Expression
1 znegscld.1
 |-  ( ph -> A e. ZZ_s )
2 znegscl
 |-  ( A e. ZZ_s -> ( -us ` A ) e. ZZ_s )
3 1 2 syl
 |-  ( ph -> ( -us ` A ) e. ZZ_s )