Metamath Proof Explorer


Theorem znegscld

Description: The surreal integers are closed under negation. (Contributed by Scott Fenton, 26-May-2025)

Ref Expression
Hypothesis znegscld.1 ( 𝜑𝐴 ∈ ℤs )
Assertion znegscld ( 𝜑 → ( -us𝐴 ) ∈ ℤs )

Proof

Step Hyp Ref Expression
1 znegscld.1 ( 𝜑𝐴 ∈ ℤs )
2 znegscl ( 𝐴 ∈ ℤs → ( -us𝐴 ) ∈ ℤs )
3 1 2 syl ( 𝜑 → ( -us𝐴 ) ∈ ℤs )