Metamath Proof Explorer


Theorem zaddscl

Description: The surreal integers are closed under addition. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion zaddscl ( ( 𝐴 ∈ ℤs𝐵 ∈ ℤs ) → ( 𝐴 +s 𝐵 ) ∈ ℤs )

Proof

Step Hyp Ref Expression
1 reeanv ( ∃ 𝑥 ∈ ℕs𝑧 ∈ ℕs ( ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) ↔ ( ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) )
2 reeanv ( ∃ 𝑦 ∈ ℕs𝑤 ∈ ℕs ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) ↔ ( ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) )
3 2 2rexbii ( ∃ 𝑥 ∈ ℕs𝑧 ∈ ℕs𝑦 ∈ ℕs𝑤 ∈ ℕs ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) ↔ ∃ 𝑥 ∈ ℕs𝑧 ∈ ℕs ( ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) )
4 elzs ( 𝐴 ∈ ℤs ↔ ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) )
5 elzs ( 𝐵 ∈ ℤs ↔ ∃ 𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) )
6 4 5 anbi12i ( ( 𝐴 ∈ ℤs𝐵 ∈ ℤs ) ↔ ( ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑧 ∈ ℕs𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) )
7 1 3 6 3bitr4ri ( ( 𝐴 ∈ ℤs𝐵 ∈ ℤs ) ↔ ∃ 𝑥 ∈ ℕs𝑧 ∈ ℕs𝑦 ∈ ℕs𝑤 ∈ ℕs ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) )
8 simpll ( ( ( 𝑥 ∈ ℕs𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs𝑤 ∈ ℕs ) ) → 𝑥 ∈ ℕs )
9 8 nnsnod ( ( ( 𝑥 ∈ ℕs𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs𝑤 ∈ ℕs ) ) → 𝑥 No )
10 simplr ( ( ( 𝑥 ∈ ℕs𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs𝑤 ∈ ℕs ) ) → 𝑧 ∈ ℕs )
11 10 nnsnod ( ( ( 𝑥 ∈ ℕs𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs𝑤 ∈ ℕs ) ) → 𝑧 No )
12 simprl ( ( ( 𝑥 ∈ ℕs𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs𝑤 ∈ ℕs ) ) → 𝑦 ∈ ℕs )
13 12 nnsnod ( ( ( 𝑥 ∈ ℕs𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs𝑤 ∈ ℕs ) ) → 𝑦 No )
14 simprr ( ( ( 𝑥 ∈ ℕs𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs𝑤 ∈ ℕs ) ) → 𝑤 ∈ ℕs )
15 14 nnsnod ( ( ( 𝑥 ∈ ℕs𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs𝑤 ∈ ℕs ) ) → 𝑤 No )
16 9 11 13 15 addsubs4d ( ( ( 𝑥 ∈ ℕs𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs𝑤 ∈ ℕs ) ) → ( ( 𝑥 +s 𝑧 ) -s ( 𝑦 +s 𝑤 ) ) = ( ( 𝑥 -s 𝑦 ) +s ( 𝑧 -s 𝑤 ) ) )
17 nnaddscl ( ( 𝑥 ∈ ℕs𝑧 ∈ ℕs ) → ( 𝑥 +s 𝑧 ) ∈ ℕs )
18 nnaddscl ( ( 𝑦 ∈ ℕs𝑤 ∈ ℕs ) → ( 𝑦 +s 𝑤 ) ∈ ℕs )
19 nnzsubs ( ( ( 𝑥 +s 𝑧 ) ∈ ℕs ∧ ( 𝑦 +s 𝑤 ) ∈ ℕs ) → ( ( 𝑥 +s 𝑧 ) -s ( 𝑦 +s 𝑤 ) ) ∈ ℤs )
20 17 18 19 syl2an ( ( ( 𝑥 ∈ ℕs𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs𝑤 ∈ ℕs ) ) → ( ( 𝑥 +s 𝑧 ) -s ( 𝑦 +s 𝑤 ) ) ∈ ℤs )
21 16 20 eqeltrrd ( ( ( 𝑥 ∈ ℕs𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs𝑤 ∈ ℕs ) ) → ( ( 𝑥 -s 𝑦 ) +s ( 𝑧 -s 𝑤 ) ) ∈ ℤs )
22 oveq12 ( ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( 𝐴 +s 𝐵 ) = ( ( 𝑥 -s 𝑦 ) +s ( 𝑧 -s 𝑤 ) ) )
23 22 eleq1d ( ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( ( 𝐴 +s 𝐵 ) ∈ ℤs ↔ ( ( 𝑥 -s 𝑦 ) +s ( 𝑧 -s 𝑤 ) ) ∈ ℤs ) )
24 21 23 syl5ibrcom ( ( ( 𝑥 ∈ ℕs𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs𝑤 ∈ ℕs ) ) → ( ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( 𝐴 +s 𝐵 ) ∈ ℤs ) )
25 24 rexlimdvva ( ( 𝑥 ∈ ℕs𝑧 ∈ ℕs ) → ( ∃ 𝑦 ∈ ℕs𝑤 ∈ ℕs ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( 𝐴 +s 𝐵 ) ∈ ℤs ) )
26 25 rexlimivv ( ∃ 𝑥 ∈ ℕs𝑧 ∈ ℕs𝑦 ∈ ℕs𝑤 ∈ ℕs ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( 𝐴 +s 𝐵 ) ∈ ℤs )
27 7 26 sylbi ( ( 𝐴 ∈ ℤs𝐵 ∈ ℤs ) → ( 𝐴 +s 𝐵 ) ∈ ℤs )