Step |
Hyp |
Ref |
Expression |
1 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ ℕs ∃ 𝑧 ∈ ℕs ( ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) ↔ ( ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑧 ∈ ℕs ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) ) |
2 |
|
reeanv |
⊢ ( ∃ 𝑦 ∈ ℕs ∃ 𝑤 ∈ ℕs ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) ↔ ( ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) ) |
3 |
2
|
2rexbii |
⊢ ( ∃ 𝑥 ∈ ℕs ∃ 𝑧 ∈ ℕs ∃ 𝑦 ∈ ℕs ∃ 𝑤 ∈ ℕs ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) ↔ ∃ 𝑥 ∈ ℕs ∃ 𝑧 ∈ ℕs ( ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) ) |
4 |
|
elzs |
⊢ ( 𝐴 ∈ ℤs ↔ ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ) |
5 |
|
elzs |
⊢ ( 𝐵 ∈ ℤs ↔ ∃ 𝑧 ∈ ℕs ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) |
6 |
4 5
|
anbi12i |
⊢ ( ( 𝐴 ∈ ℤs ∧ 𝐵 ∈ ℤs ) ↔ ( ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ∧ ∃ 𝑧 ∈ ℕs ∃ 𝑤 ∈ ℕs 𝐵 = ( 𝑧 -s 𝑤 ) ) ) |
7 |
1 3 6
|
3bitr4ri |
⊢ ( ( 𝐴 ∈ ℤs ∧ 𝐵 ∈ ℤs ) ↔ ∃ 𝑥 ∈ ℕs ∃ 𝑧 ∈ ℕs ∃ 𝑦 ∈ ℕs ∃ 𝑤 ∈ ℕs ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) ) |
8 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → 𝑥 ∈ ℕs ) |
9 |
8
|
nnsnod |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → 𝑥 ∈ No ) |
10 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → 𝑧 ∈ ℕs ) |
11 |
10
|
nnsnod |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → 𝑧 ∈ No ) |
12 |
|
simprl |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → 𝑦 ∈ ℕs ) |
13 |
12
|
nnsnod |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → 𝑦 ∈ No ) |
14 |
|
simprr |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → 𝑤 ∈ ℕs ) |
15 |
14
|
nnsnod |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → 𝑤 ∈ No ) |
16 |
9 11 13 15
|
addsubs4d |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( 𝑥 +s 𝑧 ) -s ( 𝑦 +s 𝑤 ) ) = ( ( 𝑥 -s 𝑦 ) +s ( 𝑧 -s 𝑤 ) ) ) |
17 |
|
nnaddscl |
⊢ ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) → ( 𝑥 +s 𝑧 ) ∈ ℕs ) |
18 |
|
nnaddscl |
⊢ ( ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) → ( 𝑦 +s 𝑤 ) ∈ ℕs ) |
19 |
|
nnzsubs |
⊢ ( ( ( 𝑥 +s 𝑧 ) ∈ ℕs ∧ ( 𝑦 +s 𝑤 ) ∈ ℕs ) → ( ( 𝑥 +s 𝑧 ) -s ( 𝑦 +s 𝑤 ) ) ∈ ℤs ) |
20 |
17 18 19
|
syl2an |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( 𝑥 +s 𝑧 ) -s ( 𝑦 +s 𝑤 ) ) ∈ ℤs ) |
21 |
16 20
|
eqeltrrd |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( 𝑥 -s 𝑦 ) +s ( 𝑧 -s 𝑤 ) ) ∈ ℤs ) |
22 |
|
oveq12 |
⊢ ( ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( 𝐴 +s 𝐵 ) = ( ( 𝑥 -s 𝑦 ) +s ( 𝑧 -s 𝑤 ) ) ) |
23 |
22
|
eleq1d |
⊢ ( ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( ( 𝐴 +s 𝐵 ) ∈ ℤs ↔ ( ( 𝑥 -s 𝑦 ) +s ( 𝑧 -s 𝑤 ) ) ∈ ℤs ) ) |
24 |
21 23
|
syl5ibrcom |
⊢ ( ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) ∧ ( 𝑦 ∈ ℕs ∧ 𝑤 ∈ ℕs ) ) → ( ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( 𝐴 +s 𝐵 ) ∈ ℤs ) ) |
25 |
24
|
rexlimdvva |
⊢ ( ( 𝑥 ∈ ℕs ∧ 𝑧 ∈ ℕs ) → ( ∃ 𝑦 ∈ ℕs ∃ 𝑤 ∈ ℕs ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( 𝐴 +s 𝐵 ) ∈ ℤs ) ) |
26 |
25
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℕs ∃ 𝑧 ∈ ℕs ∃ 𝑦 ∈ ℕs ∃ 𝑤 ∈ ℕs ( 𝐴 = ( 𝑥 -s 𝑦 ) ∧ 𝐵 = ( 𝑧 -s 𝑤 ) ) → ( 𝐴 +s 𝐵 ) ∈ ℤs ) |
27 |
7 26
|
sylbi |
⊢ ( ( 𝐴 ∈ ℤs ∧ 𝐵 ∈ ℤs ) → ( 𝐴 +s 𝐵 ) ∈ ℤs ) |