Description: The difference of two surreal positive integers is an integer. (Contributed by Scott Fenton, 25-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnzsubs | ⊢ ( ( 𝐴 ∈ ℕs ∧ 𝐵 ∈ ℕs ) → ( 𝐴 -s 𝐵 ) ∈ ℤs ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝐴 -s 𝐵 ) = ( 𝐴 -s 𝐵 ) | |
| 2 | rspceov | ⊢ ( ( 𝐴 ∈ ℕs ∧ 𝐵 ∈ ℕs ∧ ( 𝐴 -s 𝐵 ) = ( 𝐴 -s 𝐵 ) ) → ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs ( 𝐴 -s 𝐵 ) = ( 𝑥 -s 𝑦 ) ) | |
| 3 | 1 2 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℕs ∧ 𝐵 ∈ ℕs ) → ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs ( 𝐴 -s 𝐵 ) = ( 𝑥 -s 𝑦 ) ) | 
| 4 | elzs | ⊢ ( ( 𝐴 -s 𝐵 ) ∈ ℤs ↔ ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs ( 𝐴 -s 𝐵 ) = ( 𝑥 -s 𝑦 ) ) | |
| 5 | 3 4 | sylibr | ⊢ ( ( 𝐴 ∈ ℕs ∧ 𝐵 ∈ ℕs ) → ( 𝐴 -s 𝐵 ) ∈ ℤs ) |