Metamath Proof Explorer


Theorem nnzsubs

Description: The difference of two surreal positive integers is an integer. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Assertion nnzsubs ( ( 𝐴 ∈ ℕs𝐵 ∈ ℕs ) → ( 𝐴 -s 𝐵 ) ∈ ℤs )

Proof

Step Hyp Ref Expression
1 eqid ( 𝐴 -s 𝐵 ) = ( 𝐴 -s 𝐵 )
2 rspceov ( ( 𝐴 ∈ ℕs𝐵 ∈ ℕs ∧ ( 𝐴 -s 𝐵 ) = ( 𝐴 -s 𝐵 ) ) → ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs ( 𝐴 -s 𝐵 ) = ( 𝑥 -s 𝑦 ) )
3 1 2 mp3an3 ( ( 𝐴 ∈ ℕs𝐵 ∈ ℕs ) → ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs ( 𝐴 -s 𝐵 ) = ( 𝑥 -s 𝑦 ) )
4 elzs ( ( 𝐴 -s 𝐵 ) ∈ ℤs ↔ ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs ( 𝐴 -s 𝐵 ) = ( 𝑥 -s 𝑦 ) )
5 3 4 sylibr ( ( 𝐴 ∈ ℕs𝐵 ∈ ℕs ) → ( 𝐴 -s 𝐵 ) ∈ ℤs )