Metamath Proof Explorer


Theorem nnzs

Description: A positive surreal integer is a surreal integer. (Contributed by Scott Fenton, 17-May-2025)

Ref Expression
Assertion nnzs ( 𝐴 ∈ ℕs𝐴 ∈ ℤs )

Proof

Step Hyp Ref Expression
1 peano2nns ( 𝐴 ∈ ℕs → ( 𝐴 +s 1s ) ∈ ℕs )
2 nnsno ( 𝐴 ∈ ℕs𝐴 No )
3 1sno 1s No
4 pncans ( ( 𝐴 No ∧ 1s No ) → ( ( 𝐴 +s 1s ) -s 1s ) = 𝐴 )
5 2 3 4 sylancl ( 𝐴 ∈ ℕs → ( ( 𝐴 +s 1s ) -s 1s ) = 𝐴 )
6 5 eqcomd ( 𝐴 ∈ ℕs𝐴 = ( ( 𝐴 +s 1s ) -s 1s ) )
7 1nns 1s ∈ ℕs
8 rspceov ( ( ( 𝐴 +s 1s ) ∈ ℕs ∧ 1s ∈ ℕs𝐴 = ( ( 𝐴 +s 1s ) -s 1s ) ) → ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) )
9 7 8 mp3an2 ( ( ( 𝐴 +s 1s ) ∈ ℕs𝐴 = ( ( 𝐴 +s 1s ) -s 1s ) ) → ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) )
10 1 6 9 syl2anc ( 𝐴 ∈ ℕs → ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) )
11 elzs ( 𝐴 ∈ ℤs ↔ ∃ 𝑥 ∈ ℕs𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) )
12 10 11 sylibr ( 𝐴 ∈ ℕs𝐴 ∈ ℤs )