| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2nns | ⊢ ( 𝐴  ∈  ℕs  →  ( 𝐴  +s   1s  )  ∈  ℕs ) | 
						
							| 2 |  | nnsno | ⊢ ( 𝐴  ∈  ℕs  →  𝐴  ∈   No  ) | 
						
							| 3 |  | 1sno | ⊢  1s   ∈   No | 
						
							| 4 |  | pncans | ⊢ ( ( 𝐴  ∈   No   ∧   1s   ∈   No  )  →  ( ( 𝐴  +s   1s  )  -s   1s  )  =  𝐴 ) | 
						
							| 5 | 2 3 4 | sylancl | ⊢ ( 𝐴  ∈  ℕs  →  ( ( 𝐴  +s   1s  )  -s   1s  )  =  𝐴 ) | 
						
							| 6 | 5 | eqcomd | ⊢ ( 𝐴  ∈  ℕs  →  𝐴  =  ( ( 𝐴  +s   1s  )  -s   1s  ) ) | 
						
							| 7 |  | 1nns | ⊢  1s   ∈  ℕs | 
						
							| 8 |  | rspceov | ⊢ ( ( ( 𝐴  +s   1s  )  ∈  ℕs  ∧   1s   ∈  ℕs  ∧  𝐴  =  ( ( 𝐴  +s   1s  )  -s   1s  ) )  →  ∃ 𝑥  ∈  ℕs ∃ 𝑦  ∈  ℕs 𝐴  =  ( 𝑥  -s  𝑦 ) ) | 
						
							| 9 | 7 8 | mp3an2 | ⊢ ( ( ( 𝐴  +s   1s  )  ∈  ℕs  ∧  𝐴  =  ( ( 𝐴  +s   1s  )  -s   1s  ) )  →  ∃ 𝑥  ∈  ℕs ∃ 𝑦  ∈  ℕs 𝐴  =  ( 𝑥  -s  𝑦 ) ) | 
						
							| 10 | 1 6 9 | syl2anc | ⊢ ( 𝐴  ∈  ℕs  →  ∃ 𝑥  ∈  ℕs ∃ 𝑦  ∈  ℕs 𝐴  =  ( 𝑥  -s  𝑦 ) ) | 
						
							| 11 |  | elzs | ⊢ ( 𝐴  ∈  ℤs  ↔  ∃ 𝑥  ∈  ℕs ∃ 𝑦  ∈  ℕs 𝐴  =  ( 𝑥  -s  𝑦 ) ) | 
						
							| 12 | 10 11 | sylibr | ⊢ ( 𝐴  ∈  ℕs  →  𝐴  ∈  ℤs ) |