| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2nns |
⊢ ( 𝐴 ∈ ℕs → ( 𝐴 +s 1s ) ∈ ℕs ) |
| 2 |
|
nnsno |
⊢ ( 𝐴 ∈ ℕs → 𝐴 ∈ No ) |
| 3 |
|
1sno |
⊢ 1s ∈ No |
| 4 |
|
pncans |
⊢ ( ( 𝐴 ∈ No ∧ 1s ∈ No ) → ( ( 𝐴 +s 1s ) -s 1s ) = 𝐴 ) |
| 5 |
2 3 4
|
sylancl |
⊢ ( 𝐴 ∈ ℕs → ( ( 𝐴 +s 1s ) -s 1s ) = 𝐴 ) |
| 6 |
5
|
eqcomd |
⊢ ( 𝐴 ∈ ℕs → 𝐴 = ( ( 𝐴 +s 1s ) -s 1s ) ) |
| 7 |
|
1nns |
⊢ 1s ∈ ℕs |
| 8 |
|
rspceov |
⊢ ( ( ( 𝐴 +s 1s ) ∈ ℕs ∧ 1s ∈ ℕs ∧ 𝐴 = ( ( 𝐴 +s 1s ) -s 1s ) ) → ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ) |
| 9 |
7 8
|
mp3an2 |
⊢ ( ( ( 𝐴 +s 1s ) ∈ ℕs ∧ 𝐴 = ( ( 𝐴 +s 1s ) -s 1s ) ) → ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ) |
| 10 |
1 6 9
|
syl2anc |
⊢ ( 𝐴 ∈ ℕs → ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ) |
| 11 |
|
elzs |
⊢ ( 𝐴 ∈ ℤs ↔ ∃ 𝑥 ∈ ℕs ∃ 𝑦 ∈ ℕs 𝐴 = ( 𝑥 -s 𝑦 ) ) |
| 12 |
10 11
|
sylibr |
⊢ ( 𝐴 ∈ ℕs → 𝐴 ∈ ℤs ) |