Step |
Hyp |
Ref |
Expression |
1 |
|
peano2nns |
|- ( A e. NN_s -> ( A +s 1s ) e. NN_s ) |
2 |
|
nnsno |
|- ( A e. NN_s -> A e. No ) |
3 |
|
1sno |
|- 1s e. No |
4 |
|
pncans |
|- ( ( A e. No /\ 1s e. No ) -> ( ( A +s 1s ) -s 1s ) = A ) |
5 |
2 3 4
|
sylancl |
|- ( A e. NN_s -> ( ( A +s 1s ) -s 1s ) = A ) |
6 |
5
|
eqcomd |
|- ( A e. NN_s -> A = ( ( A +s 1s ) -s 1s ) ) |
7 |
|
1nns |
|- 1s e. NN_s |
8 |
|
rspceov |
|- ( ( ( A +s 1s ) e. NN_s /\ 1s e. NN_s /\ A = ( ( A +s 1s ) -s 1s ) ) -> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) |
9 |
7 8
|
mp3an2 |
|- ( ( ( A +s 1s ) e. NN_s /\ A = ( ( A +s 1s ) -s 1s ) ) -> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) |
10 |
1 6 9
|
syl2anc |
|- ( A e. NN_s -> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) |
11 |
|
elzs |
|- ( A e. ZZ_s <-> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) |
12 |
10 11
|
sylibr |
|- ( A e. NN_s -> A e. ZZ_s ) |