| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2nns |  |-  ( A e. NN_s -> ( A +s 1s ) e. NN_s ) | 
						
							| 2 |  | nnsno |  |-  ( A e. NN_s -> A e. No ) | 
						
							| 3 |  | 1sno |  |-  1s e. No | 
						
							| 4 |  | pncans |  |-  ( ( A e. No /\ 1s e. No ) -> ( ( A +s 1s ) -s 1s ) = A ) | 
						
							| 5 | 2 3 4 | sylancl |  |-  ( A e. NN_s -> ( ( A +s 1s ) -s 1s ) = A ) | 
						
							| 6 | 5 | eqcomd |  |-  ( A e. NN_s -> A = ( ( A +s 1s ) -s 1s ) ) | 
						
							| 7 |  | 1nns |  |-  1s e. NN_s | 
						
							| 8 |  | rspceov |  |-  ( ( ( A +s 1s ) e. NN_s /\ 1s e. NN_s /\ A = ( ( A +s 1s ) -s 1s ) ) -> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) | 
						
							| 9 | 7 8 | mp3an2 |  |-  ( ( ( A +s 1s ) e. NN_s /\ A = ( ( A +s 1s ) -s 1s ) ) -> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) | 
						
							| 10 | 1 6 9 | syl2anc |  |-  ( A e. NN_s -> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) | 
						
							| 11 |  | elzs |  |-  ( A e. ZZ_s <-> E. x e. NN_s E. y e. NN_s A = ( x -s y ) ) | 
						
							| 12 | 10 11 | sylibr |  |-  ( A e. NN_s -> A e. ZZ_s ) |