Description: Surreal one is a positive surreal integer. (Contributed by Scott Fenton, 15-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | 1nns | |- 1s e. NN_s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0s | |- 1s e. NN0_s |
|
2 | 0slt1s | |- 0s |
|
3 | sgt0ne0 | |- ( 0s |
|
4 | 2 3 | ax-mp | |- 1s =/= 0s |
5 | eldifsn | |- ( 1s e. ( NN0_s \ { 0s } ) <-> ( 1s e. NN0_s /\ 1s =/= 0s ) ) |
|
6 | 1 4 5 | mpbir2an | |- 1s e. ( NN0_s \ { 0s } ) |
7 | df-nns | |- NN_s = ( NN0_s \ { 0s } ) |
|
8 | 6 7 | eleqtrri | |- 1s e. NN_s |