Database
SURREAL NUMBERS
Subsystems of surreals
Natural numbers
1nns
Next ⟩
peano2nns
Metamath Proof Explorer
Ascii
Unicode
Theorem
1nns
Description:
Surreal one is a positive surreal integer.
(Contributed by
Scott Fenton
, 15-Apr-2025)
Ref
Expression
Assertion
1nns
⊢
1
s
∈
ℕ
s
Proof
Step
Hyp
Ref
Expression
1
1n0s
⊢
1
s
∈
ℕ
0s
2
0slt1s
⊢
0
s
<
s
1
s
3
sgt0ne0
⊢
0
s
<
s
1
s
→
1
s
≠
0
s
4
2
3
ax-mp
⊢
1
s
≠
0
s
5
eldifsn
⊢
1
s
∈
ℕ
0s
∖
0
s
↔
1
s
∈
ℕ
0s
∧
1
s
≠
0
s
6
1
4
5
mpbir2an
⊢
1
s
∈
ℕ
0s
∖
0
s
7
df-nns
⊢
ℕ
s
=
ℕ
0s
∖
0
s
8
6
7
eleqtrri
⊢
1
s
∈
ℕ
s