Metamath Proof Explorer


Theorem peano2nns

Description: Peano postulate for positive surreal integers. One plus a positive surreal integer is a positive surreal integer. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Assertion peano2nns
|- ( A e. NN_s -> ( A +s 1s ) e. NN_s )

Proof

Step Hyp Ref Expression
1 1nns
 |-  1s e. NN_s
2 nnaddscl
 |-  ( ( A e. NN_s /\ 1s e. NN_s ) -> ( A +s 1s ) e. NN_s )
3 1 2 mpan2
 |-  ( A e. NN_s -> ( A +s 1s ) e. NN_s )