| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0addscl |  |-  ( ( A e. NN0_s /\ B e. NN0_s ) -> ( A +s B ) e. NN0_s ) | 
						
							| 2 | 1 | ad2ant2r |  |-  ( ( ( A e. NN0_s /\ 0s  ( A +s B ) e. NN0_s ) | 
						
							| 3 |  | simpll |  |-  ( ( ( A e. NN0_s /\ 0s  A e. NN0_s ) | 
						
							| 4 | 3 | n0snod |  |-  ( ( ( A e. NN0_s /\ 0s  A e. No ) | 
						
							| 5 |  | simprl |  |-  ( ( ( A e. NN0_s /\ 0s  B e. NN0_s ) | 
						
							| 6 | 5 | n0snod |  |-  ( ( ( A e. NN0_s /\ 0s  B e. No ) | 
						
							| 7 |  | simplr |  |-  ( ( ( A e. NN0_s /\ 0s  0s  | 
						
							| 8 |  | simprr |  |-  ( ( ( A e. NN0_s /\ 0s  0s  | 
						
							| 9 | 4 6 7 8 | addsgt0d |  |-  ( ( ( A e. NN0_s /\ 0s  0s  | 
						
							| 10 | 2 9 | jca |  |-  ( ( ( A e. NN0_s /\ 0s  ( ( A +s B ) e. NN0_s /\ 0s  | 
						
							| 11 |  | elnns2 |  |-  ( A e. NN_s <-> ( A e. NN0_s /\ 0s  | 
						
							| 12 |  | elnns2 |  |-  ( B e. NN_s <-> ( B e. NN0_s /\ 0s  | 
						
							| 13 | 11 12 | anbi12i |  |-  ( ( A e. NN_s /\ B e. NN_s ) <-> ( ( A e. NN0_s /\ 0s  | 
						
							| 14 |  | elnns2 |  |-  ( ( A +s B ) e. NN_s <-> ( ( A +s B ) e. NN0_s /\ 0s  | 
						
							| 15 | 10 13 14 | 3imtr4i |  |-  ( ( A e. NN_s /\ B e. NN_s ) -> ( A +s B ) e. NN_s ) |