Metamath Proof Explorer


Theorem nnaddscl

Description: The positive surreal integers are closed under addition. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Assertion nnaddscl
|- ( ( A e. NN_s /\ B e. NN_s ) -> ( A +s B ) e. NN_s )

Proof

Step Hyp Ref Expression
1 n0addscl
 |-  ( ( A e. NN0_s /\ B e. NN0_s ) -> ( A +s B ) e. NN0_s )
2 1 ad2ant2r
 |-  ( ( ( A e. NN0_s /\ 0s  ( A +s B ) e. NN0_s )
3 simpll
 |-  ( ( ( A e. NN0_s /\ 0s  A e. NN0_s )
4 3 n0snod
 |-  ( ( ( A e. NN0_s /\ 0s  A e. No )
5 simprl
 |-  ( ( ( A e. NN0_s /\ 0s  B e. NN0_s )
6 5 n0snod
 |-  ( ( ( A e. NN0_s /\ 0s  B e. No )
7 simplr
 |-  ( ( ( A e. NN0_s /\ 0s  0s 
8 simprr
 |-  ( ( ( A e. NN0_s /\ 0s  0s 
9 4 6 7 8 addsgt0d
 |-  ( ( ( A e. NN0_s /\ 0s  0s 
10 2 9 jca
 |-  ( ( ( A e. NN0_s /\ 0s  ( ( A +s B ) e. NN0_s /\ 0s 
11 elnns2
 |-  ( A e. NN_s <-> ( A e. NN0_s /\ 0s 
12 elnns2
 |-  ( B e. NN_s <-> ( B e. NN0_s /\ 0s 
13 11 12 anbi12i
 |-  ( ( A e. NN_s /\ B e. NN_s ) <-> ( ( A e. NN0_s /\ 0s 
14 elnns2
 |-  ( ( A +s B ) e. NN_s <-> ( ( A +s B ) e. NN0_s /\ 0s 
15 10 13 14 3imtr4i
 |-  ( ( A e. NN_s /\ B e. NN_s ) -> ( A +s B ) e. NN_s )